• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Amazing tricks on solving this radical equation скачать в хорошем качестве

Amazing tricks on solving this radical equation 2 дня назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Amazing tricks on solving this radical equation
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Amazing tricks on solving this radical equation в качестве 4k

У нас вы можете посмотреть бесплатно Amazing tricks on solving this radical equation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Amazing tricks on solving this radical equation в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Amazing tricks on solving this radical equation

After watching this video, you would be able to solve this challenging radical equation which has complex solutions. Radicals A radical is a mathematical expression that involves a root, such as a square root, cube root, or nth root. Types of Radicals 1. *Square Root*: √x (e.g., √4 = 2) 2. *Cube Root*: ∛x (e.g., ∛8 = 2) 3. *Nth Root*: ∜x or x^(1/n) (e.g., ∜16 = 2) Properties 1. *Product Rule*: √(ab) = √a * √b 2. *Quotient Rule*: √(a/b) = √a / √b 3. *Power Rule*: (√a)^n = a^(n/2) Simplifying Radicals 1. *Simplify the radicand*: Factor out perfect squares or cubes. 2. *Rationalize the denominator*: Eliminate radicals in the denominator. Applications 1. *Algebra*: Radicals are used to solve equations and inequalities. 2. *Geometry*: Radicals are used to calculate distances and lengths. 3. *Calculus*: Radicals are used in derivatives and integrals. Radical Equation A radical equation is an equation that contains a radical expression, such as a square root, cube root, or higher root. Example √(x + 2) = 3 Solving Radical Equations 1. *Isolate the radical*: Get the radical expression alone on one side. 2. *Raise both sides to the power*: Eliminate the radical by raising both sides to the power of the index (e.g., squaring both sides for square roots). 3. *Solve for the variable*: Simplify and solve for the variable. Example Solution √(x + 2) = 3 1. Square both sides: x + 2 = 9 2. Solve for x: x = 7 Check Verify the solution by plugging it back into the original equation. Types of Radical Equations 1. *Square root equations*: √(x + a) = b 2. *Cube root equations*: ∛(x + a) = b 3. *Higher root equations*: ∜(x + a) = b Complex Numbers A complex number is a number that can be expressed in the form: z = a + bi where: a is the real part b is the imaginary part i is the imaginary unit, satisfying i^2 = -1 Properties 1. *Addition*: (a + bi) + (c + di) = (a + c) + (b + d)i 2. *Multiplication*: (a + bi)(c + di) = (ac - bd) + (ad + bc)i 3. *Conjugate*: The conjugate of a + bi is a - bi Applications 1. *Algebra*: Complex numbers are used to solve polynomial equations. 2. *Geometry*: Complex numbers are used to represent points in the complex plane. 3. *Engineering*: Complex numbers are used in signal processing, control theory, and electrical engineering. Types of Complex Numbers 1. *Purely Real*: b = 0 2. *Purely Imaginary*: a = 0 3. *Complex*: a ≠ 0 and b ≠ 0 Solving the Radical Equation √x + √(-x) = 36 Step 1: Analyze the Equation Notice that √(-x) implies x ≤ 0, since the square root of a negative number is not real for positive x. Step 2: Rewrite the Equation Let's rewrite the equation using i = √(-1): √x + i√x = 36 (since √(-x) = i√x) Step 3: Combine Like Terms (1 + i)√x = 36 Step 4: Solve for √x √x = 36 / (1 + i) Step 5: Rationalize the Denominator To rationalize the denominator, multiply both numerator and denominator by the conjugate of (1 + i), which is (1 - i): √x = 36(1 - i) / (1 + i)(1 - i) = 36(1 - i) / (1 - i^2) = 36(1 - i) / 2 = 18(1 - i) Step 6: Solve for x x = (18(1 - i))^2 = 324(1 - 2i + i^2) = 324(1 - 2i - 1) = 324(-2i) = -648i The final answer is -648i #maths #education #algebra #radical #mathematician Would you like to watch more videos on questions like this? just drop a comment!

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5