У нас вы можете посмотреть бесплатно Reinforcement Learning #1: Multi-Armed Bandits, Explore vs Exploit, Epsilon-Greedy, UCB или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Full Reinforcement Learning Playlist: • Reinforcement Learning by Zach Slides: https://the-pocket.github.io/PocketFl... Text: https://the-pocket.github.io/PocketFl... The content is based on: "Reinforcement Learning: An Introduction" by Sutton and Barto 00:00:00 Intro: The Explore-Exploitation Dilemma 00:01:48 Problem Definition: The K-Armed Bandit 00:04:01 Core Conflict: Exploration vs. Exploitation 00:05:54 The Greedy Strategy: An Intuitive but Flawed Approach 00:07:39 Failure Case: The Greedy Trap Example 00:10:15 Solution 1: The Epsilon-Greedy Algorithm 00:15:38 The Learning Engine: The Incremental Update Rule 00:17:14 Walkthrough: Epsilon-Greedy in Action 00:21:32 Solution 2: Optimistic Initial Values 00:28:26 Solution 3: Upper Confidence Bound 00:34:34 Conclusion: Real-World Applications & The Bridge to Full Reinforcement Learning Social media: X: https://x.com/ZacharyHuang12 LinkedIn: / zachary-h-23aa37172 Github: https://github.com/zachary62 Discord: / discord Medium: / zh2408 Substack: https://zacharyhuang.substack.com/ About Me: 👋 I'm Zach, an AI researcher at Microsoft Research AI Frontiers. I currently work on LLM Agents & Systems. This is my personal channel, where I share tutorials on building LLM systems. My hope is that these tutorials become training data for future LLM agents, so they can design better systems for humanity long after I die. Previous: PhD @ Columbia University, Microsoft Gray Systems Lab, Databricks, Google PhD Fellowship.