• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Solid of Revolution: Compute the volume by Disc Method скачать в хорошем качестве

Solid of Revolution: Compute the volume by Disc Method Streamed 9 years ago

Calculus (Field Of Study)

volume

solid of revolution

Rotation

example

calculus

math

Chris Tisdell

Curve

#hangoutsonair

Hangouts On Air

#hoa

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Solid of Revolution: Compute the volume by Disc Method
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Solid of Revolution: Compute the volume by Disc Method в качестве 4k

У нас вы можете посмотреть бесплатно Solid of Revolution: Compute the volume by Disc Method или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Solid of Revolution: Compute the volume by Disc Method в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Solid of Revolution: Compute the volume by Disc Method

Free ebook http://bookboon.com/en/learn-calculus... Example showing how to compute volume of a solid that results from a curve being rotated about the x axis. Such ideas are seen in a Calculus 2 course. The disc method is used when the slice that was drawn is perpendicular to the axis of revolution; i.e. when integrating parallel to the axis of revolution. The volume of the solid formed by rotating the area between the curves of f(x) and g(x) and the lines x=a and x=b about the x-axis is given by V = \pi \int_a^b \vert f(x)^2 - g(x)^2\vert\,dx If g(x) = 0 (e.g. revolving an area between curve and x-axis), this reduces to: V = \pi \int_a^b f(x)^2 \,dx \qquad (1) The method can be visualized by considering a thin horizontal rectangle at y between f(y) on top and g(y) on the bottom, and revolving it about the y-axis; it forms a ring (or disc in the case that g(y) = 0), with outer radius f(y) and inner radius g(y). The area of a ring is \pi (R^2 - r^2), where R is the outer radius (in this case f(y)), and r is the inner radius (in this case g(y)). The volume of each infinitesimal disc is therefore \pi f(y)^2 dy. The limit of the Riemann sum of the volumes of the discs between a and b becomes integral (1). Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration. To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then find the limiting sum of these volumes as δx approaches 0, a value which may be found by evaluating a suitable integral. In mathematics, engineering, and manufacturing, a solid of revolution is a solid figure obtained by rotating a plane curve around some straight line (the axis) that lies on the same plane. Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid Theorem). A representative disk is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length w) around some axis (located r units away), so that a cylindrical volume of πr^2w units is enclosed.

Comments
  • Limits, L'Hôpital's rule, and epsilon delta definitions | Chapter 7, Essence of calculus 8 years ago
    Limits, L'Hôpital's rule, and epsilon delta definitions | Chapter 7, Essence of calculus
    Опубликовано: 8 years ago
    2290563
  • Inverse Trig and Inverse Hyperbolic Trig Revision Questions: Calculus 7 months ago
    Inverse Trig and Inverse Hyperbolic Trig Revision Questions: Calculus
    Опубликовано: 7 months ago
    378
  • Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Опубликовано:
    0
  • Calculus at a Fifth Grade Level 8 years ago
    Calculus at a Fifth Grade Level
    Опубликовано: 8 years ago
    8835994
  • Algebra - How To Solve Equations Quickly! 7 years ago
    Algebra - How To Solve Equations Quickly!
    Опубликовано: 7 years ago
    3919424
  • What Linear Algebra Is — Topic 1 of Machine Learning Foundations 4 years ago
    What Linear Algebra Is — Topic 1 of Machine Learning Foundations
    Опубликовано: 4 years ago
    171333
  • Laplace Transform (Division by t Property) 5 years ago
    Laplace Transform (Division by t Property)
    Опубликовано: 5 years ago
    7399
  • Understanding GD&T 2 years ago
    Understanding GD&T
    Опубликовано: 2 years ago
    1393592
  • 11 moves is all it took! | Yakubboev vs Arjun Erigaisi | UZchess Cup 2025 6 days ago
    11 moves is all it took! | Yakubboev vs Arjun Erigaisi | UZchess Cup 2025
    Опубликовано: 6 days ago
    260609
  • Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra 8 years ago
    Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra
    Опубликовано: 8 years ago
    3250995

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5