У нас вы можете посмотреть бесплатно Introduction to Data Science | 9th Computer - Chapter 9 - Lec 16 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we explain “Introduction to Data Science” from Class 9 Computer Science, Chapter 9: Data Science and Data Gathering. You will learn step by step with examples: 🌟 Introduction to Data Science Data science is like being a detective — but instead of solving crimes, you solve problems using data. For example, you can analyse students’ study habits and discover why some perform better in exams. Data science combines computer skills, mathematics, and business knowledge to turn raw data into meaningful insights. 📘 9.9.1 Understanding Data Science We discuss why learning data science is important in daily life. From finding the best time to study, to businesses improving products, to doctors predicting health trends — data science helps us make better decisions everywhere. 🌐 9.9.2 Interdisciplinary Nature of Data Science Data science is interdisciplinary, meaning it combines different fields: Computer Science → handling and organizing data Mathematics & Statistics → analysing data and finding patterns Business Knowledge → applying insights to real-life problems It also enables global collaboration. For example, a student in Pakistan can work on a science project with students in the USA and Australia through cloud-based tools. 🔄 9.9.3 Data Science Workflow The data science process is explained step by step with examples: Problem Identification – Defining the problem clearly. Data Collection – Gathering data (like survey responses). Data Cleaning – Fixing errors and organizing data. Data Analysis – Finding patterns (like traffic affecting school arrival times). Data Interpretation – Drawing meaningful conclusions. Data Visualization – Presenting results with charts and graphs for clarity. 📌 Example: A school studies why students arrive late. They collect data, clean it, analyse patterns, interpret reasons (like traffic or weather), and visualize the findings in charts. This workflow shows how data science turns raw data into real insights. 🎯 By the end of this lecture, you will understand what data science is, why it matters, how different fields contribute to it, and the complete workflow data scientists follow. This lecture is very useful for Class 9 Computer Science students, and also for anyone curious about how data science is applied in real life. #datascience #9thclasscomputer #9thcomputerscience #computerscience #amanatbhatti #class9computer