• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

[ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image скачать в хорошем качестве

[ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image 3 months ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: [ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image в качестве 4k

У нас вы можете посмотреть бесплатно [ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон [ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



[ICLR 2025] DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image

Q. Wu, Z. Dou, S. Xu, S. Shimada, C. Wang, Z. Yu, Y. Liu, C. Lin, Z. Cao, T. Komura, V. Golyanik, C. Theobalt, W. Wang, L. Liu. DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image. In ICLR 2025. Project page: https://frank-zy-dou.github.io/projec... Paper: https://openreview.net/pdf?id=rfrtFwnF62 Abstract: Reconstructing 3D hand-face interactions with deformations from a single image is a challenging yet crucial task with broad applications in AR, VR, and gaming. The challenges stem from self-occlusions during single-view hand-face interactions, diverse spatial relationships between hands and face, complex deformations, and the ambiguity of the single-view setting. The previous state-of-the-art, Decaf, employs a global fitting optimization guided by contact and deformation estimation networks trained on studio-collected data with 3D annotations. However, Decaf suffers from a time-consuming optimization process and limited generalization capability due to its reliance on 3D annotations of hand-face interaction data. To address these issues, we present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image. DICE estimates the poses of hands and faces, contacts, and deformations simultaneously using a Transformer-based architecture. It features disentangling the regression of local deformation fields and global mesh vertex locations into two network branches, enhancing deformation and contact estimation for precise and robust hand-face mesh recovery. To improve generalizability, we propose a weakly-supervised training approach that augments the training set using in-the-wild images without 3D ground-truth annotations, employing the depths of 2D keypoints estimated by off-the-shelf models and adversarial priors of poses for supervision. Our experiments demonstrate that DICE achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility. Additionally, our method operates at an interactive rate (20 fps) on an Nvidia 4090 GPU, whereas Decaf requires more than 15 seconds for a single image. The code will be available at: https://github.com/Qingxuan-Wu/DICE.

Comments
  • [ECCV 2024] ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions 10 months ago
    [ECCV 2024] ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions
    Опубликовано: 10 months ago
    138
  • AI Art: How artists are using and confronting machine learning | HOW TO SEE LIKE A MACHINE 2 years ago
    AI Art: How artists are using and confronting machine learning | HOW TO SEE LIKE A MACHINE
    Опубликовано: 2 years ago
    478471
  • What is YOLO algorithm? | Deep Learning Tutorial 31 (Tensorflow, Keras & Python) 4 years ago
    What is YOLO algorithm? | Deep Learning Tutorial 31 (Tensorflow, Keras & Python)
    Опубликовано: 4 years ago
    772210
  • Why AI art struggles with hands 2 years ago
    Why AI art struggles with hands
    Опубликовано: 2 years ago
    2773832
  • [3DV 2025] Betsu-Betsu: Multi-View Separable 3D Reconstruction of Two Interacting Objects 3 months ago
    [3DV 2025] Betsu-Betsu: Multi-View Separable 3D Reconstruction of Two Interacting Objects
    Опубликовано: 3 months ago
    58
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6582747
  • Let's Learn English! Topic: Facial Expressions 😉😒😑 (Lesson Only) 7 months ago
    Let's Learn English! Topic: Facial Expressions 😉😒😑 (Lesson Only)
    Опубликовано: 7 months ago
    46079
  • Understanding GD&T 2 years ago
    Understanding GD&T
    Опубликовано: 2 years ago
    1368078
  • [CVPR 2024] EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams 1 year ago
    [CVPR 2024] EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams
    Опубликовано: 1 year ago
    499
  • NOSTALGIA 1 year ago
    NOSTALGIA
    Опубликовано: 1 year ago
    4938054

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5