У нас вы можете посмотреть бесплатно pytorch yolo github или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Download this code from https://codegive.com In this tutorial, we will explore how to implement object detection using the YOLOv3 (You Only Look Once) algorithm with PyTorch. YOLO is a popular real-time object detection algorithm known for its speed and accuracy. We will use the PyTorch implementation available on GitHub, which provides a convenient and easy-to-use framework for training and testing YOLO models. Before we begin, make sure you have the following installed: You can install the required Python packages using the following command: First, clone the PyTorch YOLOv3 GitHub repository to your local machine. Open a terminal and run the following commands: Download the pre-trained YOLOv3 weights from the official YOLO website. You can use the following command: Convert the downloaded YOLOv3 weights to PyTorch format using the provided script: This will generate a file named yolov3.pth in the weights/ directory. Now, you can perform object detection on an image or a video using the trained YOLOv3 model. Use the following commands as examples: This command will generate an output image with bounding boxes drawn around detected objects. Replace the image and video paths with your own files as needed. To train YOLOv3 on your own dataset, follow these steps: Congratulations! You have successfully set up and used the PyTorch YOLOv3 implementation from GitHub. You can now perform object detection on images and videos, and even customize and train the model on your own dataset. Explore the GitHub repository for more advanced options and fine-tuning capabilities. ChatGPT