У нас вы можете посмотреть бесплатно STOC24 7 C 2 Tree Evaluation is in Space O(log n log log n) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A brief introduction to space lower bounds via composition, and how they fail. ABSTRACT The Tree Evaluation Problem (TreeEval) (Cook et al. 2009) is a central candidate for separating polynomial time (P) from logarithmic space (L) via composition. While space lower bounds of Ω(log^2 n) are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be solved in space O(log^2 n/log log n). Thus its status as a candidate hard problem for L remains a mystery. Our main result is to improve the space complexity of TreeEval to O(log n · log log n), thus greatly strengthening the case that Tree Evaluation is in fact in L. We show two consequences of these results. First, we show that the KRW conjecture (Karchmer, Raz, and Wigderson 1995) implies L ⊈ NC1; this itself would have many implications, such as branching programs not being efficiently simulable by formulas. Our second consequence is to increase our understanding of amortized branching programs, also known as catalytic branching programs; we show that every function f on n bits can be computed by such a program of length poly(n) and width 2^O(n). CHAPTERS 00:00 Introduction: Space & Time 02:02 I: Tree Evaluation 07:22 II: Reusing Space 18:50 III: The Full Proof 22:51 IV: What Now?