У нас вы можете посмотреть бесплатно LetA be the focus of the parabola y^2 =8x.Let the line y=mx+c intersect the parabola at two distinct или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Let A be the focus of the parabola y2=8x. Let the line y=mx+c intersect the parabola at two distinct points B and C. If the centroid of the triangle ABC is (37,34), then (BC)^2 is equal to : (a) 80. (b) 32. (c) 41. (d) 89 Hello Learner 👋 How are you? This side Mr. Sanjay Kumar (M.Sc. from IIT Ropar – 2022) and I welcome you to your own learning kingdom – Mathematics Eduserv ✨ In this exam-oriented mathematics lecture, we cover Beggar’s Method in a simple, logical, and application-based manner, specially designed for Class 12 Mathematics, JEE Mains, and JEE Advanced aspirants. What You’ll Master in This Lecture ✔ What is Beggar’s Method in Mathematics ✔ Conceptual understanding with step-by-step explanation ✔ Applications of Beggar’s Method in exam-level problems ✔ How to use Beggar’s Method efficiently in JEE questions ✔ Common mistakes students make & smart solving approach ✔ Strong foundation for advanced problem-solving This lecture is highly recommended for students who want clarity + confidence + speed in Mathematics. 🎯 Best For • Class 12 Board Students • JEE Mains Aspirants • JEE Advanced Aspirants • Students preparing for IIT-JEE Mathematics • Learners who want strong fundamentals 📲 Join Our Official Learning Community • Official Telegram Channel 👇👇👇 https://t.me/mathematicseduserv • Class 12th Telegram Channel 👇👇👇 https://t.me/MEclass12theJEE • Doubt Discussion Group 👇👇👇 https://t.me/+w081hNEDRY02MTRl 🧠 About Mathematics Eduserv At Mathematics Eduserv, we focus on concept-based learning, exam relevance, and logical problem-solving, inspired by top teaching standards followed in IIT-JEE coaching platforms. More full-chapter lectures, advanced problem sessions, and JEE-focused content are coming soon. 👉 Stay connected & keep learning ❤️ Beggar Method Beggar Method Mathematics Beggar Method Class 12 Beggar Method Applications Class 12 Maths JEE Maths JEE Mains Mathematics JEE Advanced Maths Maths for IIT JEE Mathematics Eduserv Maths by Sanjay Kumar IIT Level Maths Problem Solving Maths Maths Tricks for JEE #BeggarMethod #Class12Maths #JEEMains #JEEAdvanced #MathematicsEduserv #MathsForJEE #IITJEE