У нас вы можете посмотреть бесплатно Variational Autoencoders | Generative AI Animated или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video you will learn everything about variational autoencoders. These generative models have been popular for more than a decade, and are still used in many applications. If you want to dive even deeper into this topic, I would suggest you read the original paper from Kingma, and an overview he wrote later on: Auto-Encoding Variational Bayes https://arxiv.org/abs/1312.6114 An Introduction to Variational Autoencoders https://arxiv.org/abs/1906.02691 If you want more accessible ressources, these blog posts by Matthew N. Bernstein are incredible to understand the different parts of the theory behind VAEs: Variational Autoencoders https://mbernste.github.io/posts/vae/ Variational Inference https://mbernste.github.io/posts/vari... The Evidence Lower Bound https://mbernste.github.io/posts/elbo/ Chapters: 00:00 Introduction 01:05 Context 06:20 General Principle of VAEs 08:53 Evidence Lower Bound 11:01 The Reparameterization Trick 14:05 Training and Inference 16:28 Limitations 18:40 Bonus: ELBO derivations Shout out to the viewers who contributed to the subtitles: Chinese: Fan Li, MouRen Sun This video features animations created with Manim, inspired by Grant Sanderson's work at @3blue1brown. All the code for the animations of this video is available in the following github repository: https://github.com/ytdeepia/Variation... If you enjoyed the content, please like, comment, and subscribe to support the channel! #deeplearning #artificialintelligence #generativeai #machinelearning #manim #education #science