У нас вы можете посмотреть бесплатно Bullet collision thought experiment или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
13:45 nuance: Google said bullet diameters are slightly larger than bore calibers. I assume this is for a snug fit. I would occasionally look at this problem for months and could never decide if it was an area problem or a volume problem. When I made this video, I didn’t realize they were the same problem that gave the same answer. The area model is correct so I’m leaving this video up - but the slight nuance is - so is the volume model. You may see my other video where I show the relationship between area, volume and probability if you wish - I actually thought it was mind blowing. Afterthought: I wondered if I should double the area of the bullets for the calculations. This is because; what if each bullet took up exactly 1/2 of the area of the range and each bullet passed each other on opposite halves. Then, theoretically, one bullet only needs to slightly cross over into the area of the other bullet (even just a Planck length) to get a hit. Thus there’s 100% chance of collision. But if you break the area of the range down into millions of fractals (or pixels), and the bullets could only be in one pixel at a time, then they either occupy the same pixel or they don’t. So I’ll leave this as is for now. These are extremely complicated problems; great for someone that’s always looking for errors…always probing…always learning.