У нас вы можете посмотреть бесплатно Integral einer Fläche | Wie berechne ich das Flächenintegral zwischen Funktion und x-Achse? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
lernflix.at bietet individuelle Online Nachhilfe in Mathematik. Für mehr Info gehe auf https://lernflix.at Man integriert Funktionen meistens, weil ihre Kurven keine geometrische Figur bilden und es daher mit einfachen Flächeninhaltsformeln wie wir sie zum Beispiel für ein Quadrat oder ein Dreieck kennen möglich ist den von der x-Achse oder durch zwei Funktionen eingeschlossenen Flächeninhalt zu bestimmen. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration. Das bestimmte Integral einer Funktion ordnet dieser eine Zahl zu. Bildet man das bestimmte Integral einer reellen Funktion in einer Variablen, so lässt sich das Ergebnis im zweidimensionalen Koordinatensystem als Flächeninhalt der Fläche, die zwischen dem Graphen der Funktion, der x-Achse sowie den begrenzenden Parallelen zur y-Achse liegt, deuten. Hierbei zählen Flächenstücke unterhalb der x-Achse negativ. Man spricht vom orientierten Flächeninhalt (auch Flächenbilanz). Diese Konvention wird gewählt, damit das bestimmte Integral eine lineare Abbildung ist, was sowohl für theoretische Überlegungen als auch für konkrete Berechnungen eine zentrale Eigenschaft des Integralbegriffs darstellt. Auch wird so sichergestellt, dass der sogenannte Hauptsatz der Differential- und Integralrechnung gilt. Das unbestimmte Integral einer Funktion ordnet dieser eine Menge von Funktionen zu, deren Elemente Stammfunktionen genannt werden. Diese zeichnen sich dadurch aus, dass ihre ersten Ableitungen mit der Funktion, die integriert wurde, übereinstimmen. Der Hauptsatz der Differential- und Integralrechnung gibt Auskunft darüber, wie bestimmte Integrale aus Stammfunktionen berechnet werden können. Im Gegensatz zur Differentiation existiert für die Integration auch elementarer Funktionen kein einfacher und kein alle Fälle abdeckender Algorithmus. Integration erfordert trainiertes Raten, das Benutzen spezieller Umformungen (Integration durch Substitution, partielle Integration), Nachschlagen in einer Integraltafel oder das Verwenden spezieller Computer-Software. Oft erfolgt die Integration nur näherungsweise mittels sogenannter numerischer Quadratur. Ein Ziel der Integralrechnung ist die Berechnung von Flächeninhalten krummlinig begrenzter Bereiche der Ebene. In den meisten in der Praxis auftretenden Fällen sind derartige Flächen beschrieben durch zwei stetige Funktionen f,g auf einem kompakten Intervall [a,b], deren Graphen die Fläche begrenzen. Auf Grund seiner fundamentalen Bedeutung erhält dieser Typ Flächeninhalt eine spezielle Bezeichnung mit den Integrationsgrenzen (a,b) ∫f(x)dx , gelesen als Integral von a bis b über (oder: von) f von x dx. Der Faktor dx wird heute im Allgemeinen als reiner Notationsbestandteil verwendet und steht dabei für das Differential auf der x-Achse. Statt x kann auch eine andere Variable, abgesehen von a und b gewählt werden, zum Beispiel t, was den Wert des Integrals nicht ändert. Mathematik Nachhilfe in Villach