У нас вы можете посмотреть бесплатно Which AI Model is Best for DevOps? I Tested 10 (Shocking Results) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A comprehensive, data-driven comparison of 10 leading large language models (LLMs) from Google, Anthropic, OpenAI, xAI, DeepSeek, and Mistral, specifically tested for DevOps, SRE, and platform engineering workflows. Instead of relying on traditional benchmarks or marketing claims, this evaluation runs real agent workflows through production scenarios: Kubernetes operations, cluster analysis, policy generation, manifest creation, and systematic troubleshooting—all with actual timeout constraints. The results reveal shocking gaps between benchmark promises and production reality: 70% of models couldn't complete tasks in reasonable timeframes, premium "reasoning" models failed on tasks cheaper alternatives handled easily, and the most expensive model ($120 per million output tokens) failed more tests than it passed. The evaluation measures five key dimensions: overall performance quality, reliability and completion rates, consistency across different tasks, cost-performance value, and context window efficiency. Five distinct test scenarios push models through endurance tests (100+ consecutive interactions), rapid pattern recognition (5-minute workflows), comprehensive policy compliance analysis, extreme context pressure (100,000+ token loads), and systematic investigation loops requiring intelligent troubleshooting. The rankings reveal clear performance tiers, with Claude Haiku emerging as the overall winner for its exceptional efficiency and price-performance ratio, while Claude Sonnet takes the reliability crown with 98% completion rates. The video provides specific recommendations on which models to use, which to avoid, and why cost doesn't always correlate with capability in production environments. #LLMComparison #DevOps #AIforEngineers Consider joining the channel: / devopstoolkit ▬▬▬▬▬▬ 🔗 Additional Info 🔗 ▬▬▬▬▬▬ ➡ Transcript and commands: https://devopstoolkit.live/ai/best-ai... 🔗 DevOps AI Toolkit: https://github.com/vfarcic/dot-ai 🎬 Analysis report: https://github.com/vfarcic/dot-ai/blo... ▬▬▬▬▬▬ 💰 Sponsorships 💰 ▬▬▬▬▬▬ If you are interested in sponsoring this channel, please visit https://devopstoolkit.live/sponsor for more information. Alternatively, feel free to contact me over Twitter or LinkedIn (see below). ▬▬▬▬▬▬ 👋 Contact me 👋 ▬▬▬▬▬▬ ➡ BlueSky: https://vfarcic.bsky.social ➡ LinkedIn: / viktorfarcic ▬▬▬▬▬▬ 🚀 Other Channels 🚀 ▬▬▬▬▬▬ 🎤 Podcast: https://www.devopsparadox.com/ 💬 Live streams: / devopsparadox ▬▬▬▬▬▬ ⏱ Timecodes ⏱ ▬▬▬▬▬▬ 00:00 Large Language Models (LLMs) Compared 01:54 How I Compare Large Language Models 05:01 LLM Evaluation Criteria and Test Scenarios 13:23 AI Model Benchmark Results 27:34 AI Model Rankings and Recommendations