У нас вы можете посмотреть бесплатно What If There’s a Whole Family of 2D Number Systems? | Dimensional Algebra Part 1 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we journey from the familiar world of complex numbers into the unexplored realm of *Mokabic numbers* and beyond. You'll discover how each 2D number system has its own unique geometry and algebra, built using real numbers as coefficients and defined by rotational symmetry. We introduce the *Mokabic number system**, where the unit t satisfies t^3 = -1, giving rise to a beautiful hexagonal structure and 60° rotations. Then, we explore how to **generalize all 2D number systems* using the form r^n = -1, where each n creates a unique algebraic universe. Finally, we reveal the foundation of a much bigger idea — a recursive method to build higher-dimensional number systems using lower ones as coefficients. This is the first step into *Dimensional Algebra* — a powerful new framework for understanding space, rotation, and algebraic structure in any dimension. Tags: Complex Numbers, Mokabic Numbers, t³ = -1, Generalized 2D Numbers, Algebraic Geometry, Rotational Algebra, Dimensional Algebra, Quaternion Alternative, New Number System