У нас вы можете посмотреть бесплатно Machine Learning the Product - Boxun Zhang или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
With Spotify’s constant evolving product and fast growing user base, the user behavior in Spotify is becoming significantly diversified and complex. Thus, obtaining a holistic view of user behavior is crucial for future product development. However, such knowledge is difficult to obtain using A/B testing, the widely used technique to validate hypotheses, as A/B testing is designed to work well with relatively independent product changes and metrics. To address this issue, we recently adopted machine learning techniques to study the complex user behavior. The machine learning approach provides good understanding of relationships between various aspects of user behavior to the key metrics we are trying to optimize. In this talk, Boxun Zhang gives an introduction of the Machine Learning approach, and some important lessons we have learned in the past, particularly about how Spotify combines the Machine Learning approach with traditional A/B testing. #HyperightDataTalks is a video podcast of best presentations, discussions and interviews with some of the most innovative minds, enterprise practitioners, technology and service providers, start-ups and academics, working with Data Science, Data Management, Big Data, Analytics, AI, IOT and much more. All presentations are taken from Hyperight´s Data summits and now available for you. For more interviews, audio podcast and videos from some of the best presentations from our Data Summits, please visit http://www.hyperight.com Presentation recorded during: Nordic Data Science Summit 2016 - http://www.nordicdatasciencesummit.com/ Follow us on Twitter: / datanordics More information about Hyperight: http://www.hyperight.com/ Subscribe to our channel: / @hyperight