• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

NIPS: Oral Session 5 - Alexandros G. Dimakis скачать в хорошем качестве

NIPS: Oral Session 5 - Alexandros G. Dimakis 9 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
NIPS: Oral Session 5 - Alexandros G. Dimakis
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: NIPS: Oral Session 5 - Alexandros G. Dimakis в качестве 4k

У нас вы можете посмотреть бесплатно NIPS: Oral Session 5 - Alexandros G. Dimakis или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон NIPS: Oral Session 5 - Alexandros G. Dimakis в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



NIPS: Oral Session 5 - Alexandros G. Dimakis

Sparse Polynomial Learning and Graph Sketching Let f:{−1,1}n→R be a polynomial with at most s non-zero real coefficients. We give an algorithm for exactly reconstructing f given random examples from the uniform distribution on {−1,1}n that runs in time polynomial in n and 2s and succeeds if the function satisfies the \textit{unique sign property}: there is one output value which corresponds to a unique set of values of the participating parities. This sufficient condition is satisfied when every coefficient of f is perturbed by a small random noise, or satisfied with high probability when s parity functions are chosen randomly or when all the coefficients are positive. Learning sparse polynomials over the Boolean domain in time polynomial in n and 2s is considered notoriously hard in the worst-case. Our result shows that the problem is tractable for almost all sparse polynomials. Then, we show an application of this result to hypergraph sketching which is the problem of learning a sparse (both in the number of hyperedges and the size of the hyperedges) hypergraph from uniformly drawn random cuts. We also provide experimental results on a real world dataset.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5