У нас вы можете посмотреть бесплатно Arithmetic hyperbolic 3-manifolds, perfectoid spaces, and Galois representations III - Peter Scholze или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Peter Scholze University of Bonn February 14, 2014 One of the most studied objects in mathematics is the modular curve, which is the quotient of hyperbolic 2-space by the action of SL2. It is naturally the home of modular forms, but it also admits an algebraic structure. The interplay of these structures lies at the heart of the Langlands correspondence for GL2/ℚ G L 2 Q , connecting modular forms with Galois representations. The natural generalizations of the modular curve to higher dimension are the arithmetic locally symmetric spaces. Some of them, namely Shimura varieties, admit an algebraic structure; however, others don't, and this has blocked progress for a long time. The first example is the case of Bianchi manifolds, which are quotients of hyperbolic 3-space by the action of SL2O is the ring of integers in an imaginary-quadratic field. These manifolds have a lot of torsion in their singular homology, which has long been expected to carry arithmetic information. I will start by explaining the conjectures relating these objects with Galois representations, and then explain the recent progress made on these conjectures. Ultimately, this relies on new results on the p p -adic geometry of Shimura varieties and the theory of perfectoid spaces, of which I will try to give some impression. For more videos, visit http://video.ias.edu