У нас вы можете посмотреть бесплатно Data Science Essentials – Crash Course in A⧸B Testing with Full Project [2.5H] или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Streamline your journey to becoming a data science expert with our FREE workbook for 'The Complete Data Science Roadmap [2024]'! We've simplified the key steps and concepts, so you can focus on mastering the essentials without the overwhelm. Get your roadmap here: https://join.lunartech.ai/complete-da... In this applied Data Science Crash Course, we cover everything you need to know about A/B testing, from the concepts to the practical details they can apply in business. The course merges in-depth statistical analysis (think hypothesis testing, significance levels, and the nitty-gritty of pooled estimates, test statistics, p-values, and assessing statistical significance) with the kind of data science theories big tech firms rely on, all alongside practical Python tutorials for real-world test implementation. Plus, there's a real-life case study thrown in to help you understand the concepts more. ✏️ Course created by Tatev Karen Aslanyan. Start Your Free Trial: https://lunartech.ai/ ⭐️ Contents ⭐️ ⌨️ (0:00:00) Video Introduction ⌨️ (0:03:49) Introduction to Data Science and A/B Testing ⌨️ (0:05:38) Basics of A/B Testing in Data Science ⌨️ (0:07:06) Key Parameters of A/B Testing for Data Scientists ⌨️ (0:09:24) Formulating Hypotheses and Identifying Primary Metrics in Data Science A/B Testing ⌨️ (0:19:55) Designing an A/B Test: Data Science Approach ⌨️ (0:37:56) Resources for A/B Testing in Data Science ⌨️ (0:39:22) Analyzing A/B Test Results in Python: Data Science Techniques ⌨️ (1:01:00) Data Science Portfolio Project: Case Study with AB Testing ⌨️ (1:04:38) Reintroduction to A/B Testing in the Data Science Process ⌨️ (1:21:07) Data Science Techniques: Loading Data with Pandas for A/B Testing ⌨️ (1:29:19) Data Science Visualization: Using Matplotlib and Seaborn for A/B Test Click Data ⌨️ (1:38:38) Data Science Power Analysis: Understanding A/B Test Model Parameters ⌨️ (1:44:25) Data Science Calculations: Pooled Estimates and Variance for A/B Testing ⌨️ (2:06:48) Computing A/B Test P-Values: Data Science Methods for Statistical Significance ⌨️ (2:12:42) Practical Significance in A/B Testing: A Data Science Perspective ⌨️ (2:29:07) Conclusion: Wrapping Up A/B Testing in Data Science #datascience2024 #lunartechai #abtesting #uxdesigner #lunartech #machinelearning #datascience #dataanalytics #softwareengineer #customerengagement