У нас вы можете посмотреть бесплатно Vectors Introduction Worksheet Unit 1 MCV4U Complete Solution - EDEXCEL - GCSE или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#edexcel #vectors #MCV4U_Vectors #gcse VECTORS UNIT 2 TEST: • Vectors Unit 2 Dot Cross Product Applicati... Vectors Test: • Vector Introduction Unit Test 6 MCV4U Vect... • How Many Right Triangles in Spiral Pattern... IB MCV4U Test on Introduction of Vectors: • Vectors Introduction Previous Test Questio... / @mathematicstutor Learn From Anil Kumar: [email protected] #vectors_MCV4U #anilkumar #globalmathinstitute #edexcel #vectors #vectors_IBmath #vectors_application #vector_geometry #MCV4U_Vectors #octants #directioncosines Q1. A camera is suspended by two wires over a football field to get shots of the action from above. At one point, the camera is closer to the left side of the field. The tension in the wire on the left is 1500 N and the tension in the wire on the right is 800 N. The angle between the two wires is 130˚. Determine the approximate magnitude and direction of the resultant force. Q2. Three forces act on a body. A force of 100 N acts towards the north, a force of 120 N acts towards the east, and a force if 90 N acts at N20˚E. Determine the resultant. Q3. A ship’s course is set at a heading of 143˚ at 18 knots. A 10-knot current flows at a bearing of 112˚. What is the ground velocity of the ship? Q4. Write each force as an algebraic vector in component form: a. 500 N applied at 30˚ to the horizontal. b. 25 N applied downwards. Q7. Determine the angle between the vector PQ and the positice x-axis, given endpoints P(4, 7) and C(8, 3). Q8. Determine the value(s) of k such that u and v are orthogonal vectors. a. u = (4, 1, 3), v = (-1, 5, k). b. u = (11, 3, 2k), v = (k, 4, k). Q9. Find a vector that is orthogonal to both u = (2, 3, 1) and v = (4, 5, -2). Q10. Find a unit vector that is orthogonal to both u = 3i – 4j +k and v = (2, 3, -4). #GCSE #SAT #EQAO #IBSLmath