У нас вы можете посмотреть бесплатно Speeding up TensorFlow and PyTorch with Alluxio или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Alluxio Webinar August 25, 2021 For more Alluxio events: https://www.alluxio.io/events/ Speakers: Lu Qiu, Alluxio Driven by strong interests from our open source community, the Alluxio core engineering team re-designed things to come up with a more efficient and transparent way for users to leverage data orchestration through the POSIX interface. This enables much better performance for ML workloads where data is accessed via the POSIX interface. In this 20 minute community session, you’ll hear from Lu Qiu, one of Alluxio’s lead engineers on the POSIX implementation project. In this session, you’ll learn: How Alluxio’s new JNI-based FUSE implementation supports more efficient POSIX data access How improvements to multiple data operations, including distributedLoad, optimizations on listing or calculating directories with a massive amounts of files, etc., improve performance. In model training How these latest enhancements improve performance on TensorFlow and PyTorch training workloads, even with GPU-based training and compute