У нас вы можете посмотреть бесплатно Black–Scholes equation in quantitative finance with variable parameters: a path to a generalized Sch или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This research introduces a refined Black–Scholes model designed to better reflect the fluid nature of modern financial markets. By replacing static variables with time-varying parameters governed by power law dynamics, the authors address the traditional framework's failure to account for shifting volatility and interest rates. The study utilizes advanced mathematical tools, such as Laplace transforms and Wick rotations, to derive analytical solutions for derivative pricing. Furthermore, the paper establishes a unique connection between quantum physics and quantitative finance, comparing stock price movements to particle behavior through a quantum-mechanical lens. Numerical simulations reveal that this generalized approach produces wave-like solitary solutions that align more closely with empirical market data. Consequently, this work offers a robust theoretical improvement for forecasting option values in increasingly complex economic environments. R. A. El-Nabulsi, W. Anukool, “Black-Scholes Equation in Quantitative Finance with Variable Parameters: A Path to a Generalized Schrodinger Equation,” Financial Innovation, 2026. https://doi.org/10.1186/s40854-025-00...