У нас вы можете посмотреть бесплатно Jeffrey Fessler : Joint Optimization and Learning for Image Reconstruction in MRI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Recording of Jeffrey Fessler’s (University of Michigan) talk on April 21, 2022, at the EPFL Seminar Series in Imaging. Abstract. Machine learning approaches to medical image reconstruction are of considerable recent interest, especially supervised approaches that use a corpus of training data. Accelerated MRI scans, where fewer k-space points than image voxels are acquired, is a natural setting for such reconstruction methods. Recently, machine learning methods for optimizing the k-space sampling have also had growing interest. This talk will summarize recent work where we jointly optimize non-Cartesian k-space sampling, heeding physical constraints like gradient slew rate, and a learning-based image reconstruction method. Joint work with Guanhua Wang, Tianrui Luo, Jon Nielsen, and Doug Noll, based on http://arxiv.org/abs/2101.11369 See upcoming talks on: imagingseminars.org The EPFL Seminar Series in Imaging is run by EPFL Center for Imaging: imaging.epfl.ch