У нас вы можете посмотреть бесплатно TD-Lambda: Blending N-Step Return Estimates или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Code: https://github.com/priyammaz/PyTorch-... Today we continue onto TD Lambda, which improves on TD(N). Instead of having a single N-step estimate, why not do a weighted average of all N-Step estimates on your trajectory? Of course, this leads to new issues, because we are back to the same setup as Monte-Carlo, we need the full trajectory. Luckily, there is an Online method that utilized Eligibility Traces to enable computation at every step! We will first prove the equivalence between standard TD Lambda and Eligibility Traces. You can find the writeup of the proof here: http://incompleteideas.net/book/ebook.... Then we will implement it to see how it all comes together! I hope you are already comfortable with the following: Monte Carlo: • Online Monte Carlo Methods for Model-Free ... TD Learning: • Q-Learning: Off-Policy Model-Free Learning TD-N: • N-Step TD Learning: Navigating the Bias/Va... Timestamps: 00:00:00 - Recap MC/TD(0)/TD(N) 00:03:32 - What is TD Lambda? 00:10:54 - Prove Forward/Backward Method Equivalence 00:17:10 - Get Explicit Form for Eligibility Trace 00:23:30 - What do we want to show? 00:26:17 - Expand the Backward Method (w/ Trace) 00:36:01 - Expand the Forward Method (w/o Trace) 00:58:00 - Implement TD Lambda 01:10:40 - Effect of Lambda Socials! X / data_adventurer Instagram / nixielights Linkedin / priyammaz Discord / discord 🚀 Github: https://github.com/priyammaz 🌐 Website: https://www.priyammazumdar.com/