У нас вы можете посмотреть бесплатно Don't Learn Only ML In 2026 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, I break down the exact step-by-step roadmap I am using to become an AI Engineer in 2026. Most roadmaps are outdated—they focus too much on math and theory. The industry has moved on. Today, you need to know Generative AI, Agents, and Backend Engineering to actually get hired. This roadmap is designed for: Students who are confused by the "AI Hype" and don't know where to start. Developers who know Python/ML but can't build real applications. Anyone aiming for High-Paying AI/ML Internships & Jobs in 2026. I cover exactly what to learn, what to skip, and how to combine AI with Backend skills to build production-level apps (not just Jupyter notebooks). 🧩 What’s covered: The Foundation: Why Python & SQL are non-negotiable. The "Fast Track" ML: What you actually need from Scikit-Learn & Deep Learning. The 2026 Meta: Generative AI, RAG, and LLMs. Agentic AI: Building AI that does things (LangChain, CrewAI). The Missing Link: Why you NEED Backend (FastAPI, Docker) to get hired. Projects: Real project ideas that impress recruiters. 🖥️ My Coding & Setup: Laptop: MacBook Air M2 Editor: VS Code, Antigravity 👋 Who am I? I'm Jayesh, a student and developer documenting my journey to crack big tech interviews. I share raw, unfiltered vlogs about learning code, building AI projects, and the reality of the engineering grind. Connect with me: 🚀LinkedIn: / cmd-jayesh 🌠 PortFolio: https://jayesh-pf.me/ 📂 GitHub: https://github.com/jayesh-cmd