У нас вы можете посмотреть бесплатно BERT Goes Shopping: Comparing Distributional Models for Product Representations (Paper Walkthrough) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#bert #nlp #word2vec This research paper does a comparative study of the goodness of the product representations learned by BERT (Prod2BERT) and Word2Vec (Prod2Vec) techniques in the e-commerce space. ⏩ Abstract: Word embeddings (e.g., word2vec) have been applied successfully to eCommerce products through prod2vec. Inspired by the recent performance improvements on several NLP tasks brought by contextualized embeddings, we propose to transfer BERT-like architectures to eCommerce: our model -- Prod2BERT -- is trained to generate representations of products through masked session modeling. Through extensive experiments over multiple shops, different tasks, and a range of design choices, we systematically compare the accuracy of Prod2BERT and prod2vec embeddings: while Prod2BERT is found to be superior in several scenarios, we highlight the importance of resources and hyperparameters in the best performing models. Finally, we provide guidelines to practitioners for training embeddings under a variety of computational and data constraints. Sign-up for Email Subscription - https://forms.gle/duSwrYAGw6zUhoGf9 ⏩ OUTLINE: 00:00 - Background and Introduction 02:35 - Prod2BERT overview 05:30 - Hyperparameter and Design Choice 06:23 - Prod2Vec 07:16 - Dataset 08:09 - Next Event Prediction - Experiment #1 10:24 - Intent Prediction - Experiment #2 and Possible Improvements Suggestions ⏩ Paper Title: BERT Goes Shopping: Comparing Distributional Models for Product Representations ⏩ Paper: https://arxiv.org/abs/2012.09807 ⏩ Author: Federico Bianchi, Bingqing Yu, Jacopo Tagliabue ⏩ Organisation: Bocconi University, Coveo Please feel free to share out the content and subscribe to my channel :) ⏩ Subscribe - / @techvizthedatascienceguy BERT use-cases in NLP: • LSBert: A Simple Framework for Lexical Sim... BERT4REC : • BERT4Rec: Sequential Recommendation with B... ********************************************** If you want to support me financially which is totally optional and voluntary ❤️ You can consider buying me chai ( because I don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC... Support using Paypal - https://www.paypal.com/paypalme/TechV... ********************************************** ⏩ Youtube - / techvizthedatascienceguy ⏩ LinkedIn - / prakhar21 ⏩ Medium - / prakhar.mishra ⏩ GitHub - https://github.com/prakhar21 ⏩ Twitter - / rattller ********************************************* Tools I use for making videos :) ⏩ iPad - https://tinyurl.com/y39p6pwc ⏩ Apple Pencil - https://tinyurl.com/y5rk8txn ⏩ GoodNotes - https://tinyurl.com/y627cfsa #techviz #datascienceguy #nlproc #machinelearning #ecommerce #recommendation About Me: I am Prakhar Mishra and this channel is my passion project. I am currently pursuing my MS (by research) in Data Science. I have an industry work-ex of 3 years in the field of Data Science and Machine Learning with a particular focus on Natural Language Processing (NLP).