• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

MedAI скачать в хорошем качестве

MedAI 3 months ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MedAI
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: MedAI в качестве 4k

У нас вы можете посмотреть бесплатно MedAI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон MedAI в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



MedAI

Title: Towards Robust Medical Image Analysis Speaker: Zheyuan Zhang Abstract: Most statistical learning algorithms in medical image analysis rely on an over-simplified assumption, that is, the train and test data are independent and identically distributed. However, in real-world scenarios, it is common for models to encounter data from new and different centers to which they were not exposed during training. This is often the case in medical imaging applications due to differences in acquisition devices, imaging protocols, and patient characteristics. In this work, (i) We collect the first large dataset of T1-weighted and T2-weighted abdominal MRI series from five centers between March 2004 and November 2022 to investigate this robustness challenge. We develop a new pancreas segmentation method, PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. (ii) We propose one domain generalization (DG) as a promising direction as it enables models to handle data from previously unseen domains by learning domain-invariant features robust to variations across different domains via adversarial intensity attacking. (iii) To further enhance the segmentation model's robustness, we propose a novel approach to address this challenge by developing controllable diffusion models for medical image synthesis and validating this model's performance on various medical datasets. (iv) Finally, we construct a semi-supervised algorithm to take advantage of the unlabeled medical segmentation data into large-scale medical image segmentation training and show that recent advancements in large models can provide promising solutions to generate robust models against real-world clinical challenges. Speaker Bio: Zheyuan Zhang earned his bachelor's degree from Tsinghua University in 2018. During the summer of 2017, he participated in a research internship at Johns Hopkins University. From 2018 to 2025, he pursued a Ph.D. in Biomedical Engineering at Northwestern University, focusing on robust medical image analysis using deep learning methods. ------ The MedAI Group Exchange Sessions are a platform where we can critically examine key topics in AI and medicine, generate fresh ideas and discussion around their intersection and most importantly, learn from each other. We will be having weekly sessions where invited speakers will give a talk presenting their work followed by an interactive discussion and Q&A. Our sessions are held every Monday from 1pm-2pm PST. To get notifications about upcoming sessions, please join our mailing list: https://mailman.stanford.edu/mailman/... For more details about MedAI, check out our website: https://medai.stanford.edu. You can follow us on Twitter @MedaiStanford Organized by members of the Rubin Lab (http://rubinlab.stanford.edu) and Machine Intelligence in Medicine and Imaging (MI-2) Lab: Nandita Bhaskhar (https://www.stanford.edu/~nanbhas) Amara Tariq (  / amara-tariq-475815158  ) Avisha Das (https://dasavisha.github.io/)

Comments
  • MedAI #136: Advancing Medical Imaging with Curated Datasets and AI Algorithms | Debesh Jha 2 months ago
    MedAI #136: Advancing Medical Imaging with Curated Datasets and AI Algorithms | Debesh Jha
    Опубликовано: 2 months ago
    863
  • AI, Machine Learning, Deep Learning and Generative AI Explained 10 months ago
    AI, Machine Learning, Deep Learning and Generative AI Explained
    Опубликовано: 10 months ago
    1789715
  • Actuate 2024 | Sergey Levine | Robotic Foundation Models 7 months ago
    Actuate 2024 | Sergey Levine | Robotic Foundation Models
    Опубликовано: 7 months ago
    13766
  • Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Опубликовано:
    0
  • Introduction to Generative AI 2 years ago
    Introduction to Generative AI
    Опубликовано: 2 years ago
    2039528
  • The Big Short author Michael Lewis on what he thinks happens next with Trump and the USA 5 days ago
    The Big Short author Michael Lewis on what he thinks happens next with Trump and the USA
    Опубликовано: 5 days ago
    527368
  • Understanding CRISPR-Cas9 3 years ago
    Understanding CRISPR-Cas9
    Опубликовано: 3 years ago
    240801
  • 4 Hours Chopin for Studying, Concentration & Relaxation 3 years ago
    4 Hours Chopin for Studying, Concentration & Relaxation
    Опубликовано: 3 years ago
    18944700
  • Introduction to the immune system 1 year ago
    Introduction to the immune system
    Опубликовано: 1 year ago
    311367
  • How AI Could Save (Not Destroy) Education | Sal Khan | TED 2 years ago
    How AI Could Save (Not Destroy) Education | Sal Khan | TED
    Опубликовано: 2 years ago
    1876746

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5