У нас вы можете посмотреть бесплатно Pre-Train LLMs from scratch (Python) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn how LLMs work, how to train them, and how to speed up the training process in Python using the llm_trainer library. This library allows you to train any LLM model in just a few lines of code. The first step of training is called Pre-Training. In this stage, you expose a language model to a vast amount of internet data. The goal is for the model to develop a general understanding of the world. The second step is Post-Training, where you fine-tune your model on a smaller dataset formatted as dialogues (to create an assistant capable of answering questions). Additionally, there is a stage called Reinforcement Learning from Human Feedback (RLHF), which is used to train reasoning models. Useful Links: 🤖 LLM Trainer library: https://github.com/Skripkon/llm_trainer 🔑 Play around with tokenizers: https://tiktokenizer.vercel.app/ 🎭 Read about Masked Language Modeling (MLM): https://arxiv.org/pdf/1810.04805 🌐 Article about the FineWeb Dataset: https://huggingface.co/spaces/Hugging... Timecodes: 00:00 - Intro 00:30 - llm_trainer overview 02:00 - Preparing a dataset 04:40 - How tokenizers work 08:18 - llm_trainer library structure 08:55 - create_dataset function 13:27 - DataLoader 18:20 - LLMTrainer class 28:15 - GPT-2 example 30:45 - xLSTM example 33:58 - Base & Chat models, SFT 34:59 - Outro #ai #llm #nlp #LLMTraining #MachineLearning #PythonLibrary #llm_trainer #AITraining #ModelTraining #Tokenizers #PreTraining #PostTraining #GPT2 #xLSTM #FineTuning #LanguageModeling #ArtificialIntelligence #TechTutorial #DeepLearning #MLM #AIResearch #DataScience #AIExplained