У нас вы можете посмотреть бесплатно From Data to Causes I: Building a General Cross-Lagged Panel Model (GCLM) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
PLEASE SUBSCRIBE IF YOU LIKE THIS VIDEO This talk covers the General Cross-Lagged Panel Model (GCLM) using Mplus. The two-paper series covering the approach is now published -- see the first paper here (https://doi.org/10.1177/1094428119847278) and the pdf here (https://tinyurl.com/y3odhw6q), and the second paper here (https://doi.org/10.1177/1094428119847280) and the pdf here (https://tinyurl.com/y3dgmf5f). The online supplemental materials are here (https://doi.org/10.26188/5c9ec7295fefd). There is also now a 3-day workshop associated with the GCLM, starting with a basic introduction to Mplus and the way it allows building statistical models generally, before proceeding to the GCLM. Each day is comprised of 2 sessions. All videos, ppt files, and example Mplus files/data for the 3-day workshop are available for download here (https://doi.org/10.26188/5d2f1da6a791e), and the workshop videos are available on YouTube, starting with Day 1/3, Session 1/2 here ( • Mplus Workshop on Panel Data Modeling... ). The two papers can be cited as: Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2019). From data to causes I: Building a general cross-lagged panel model (GCLM). Organizational Research Methods. https://doi.org/10.1177/1094428119847278 Zyphur, M. J., Voelkle, M. C., Tay, L., Allison, P. D., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2019). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods. https://doi.org/10.1177/1094428119847280 Enjoy! Mike Michael J. Zyphur Associate Professor Business & Economics University of Melbourne