У нас вы можете посмотреть бесплатно Analytical and Machine Learning Models on Live Streaming Data | UReason Webinar или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Uncover the transformative power of machine learning in maintenance during this engaging webinar. Learn how to deploy predictive models that identify asset and process degradations early, enabling smarter decisions and smoother operations. What You’ll Learn: The role of machine learning in optimizing maintenance strategies How to exchange predictive models from data mining An overview of key machine learning algorithms and tools Techniques for model deployment and effective management A step-by-step practical example for real-world application Chapters: 00:00 - 05:41 Waiting room 05:41 - 06:08 Introduction 06:08 - 07:59 About UReason 07:59 - 08:27 Analytical and ML Models on Live Streaming Data 08:27 - 10:23 The World of Data Scientists 10:23 - 13:40 PMML 13:40 - 14:47 PMML File Content 14:47 - 22:10 An Example 22:10 - 24:52 Cooler Condition/Degradation can be Predicted 24:52 - 33:24 APM Studio Demo 33:24 - 51:31 Q&A About the Speaker: Jules Oudmans, co-founder of UReason, has guided industry leaders like Shell, Siemens, and Halliburton in leveraging predictive analytics and real-time data solutions. With years of experience across Oil & Gas, Petrochemical, Utilities, and more, Jules shares practical insights to help you succeed in your maintenance strategies. Visit ureason.com to explore how machine learning can revolutionize your maintenance operations. 🔔 Subscribe to Our Channel: Stay updated with the latest insights, tips, and webinars in predictive maintenance and operational intelligence. #MachineLearning #PredictiveMaintenance #StreamingData #UReason