У нас вы можете посмотреть бесплатно The Feed and Care of Large Language Models или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
As more organisations move from experimenting with LLMs to running them in production, a critical question emerges: how do you deploy and operate these models while maintaining control over your data, costs, and performance? In this interactive webinar, we'll explore the practical realities of self-hosted LLM deployment—from the motivations driving enterprises toward sovereign AI to the day-to-day challenges of keeping inference pipelines healthy. What we'll cover: Why organisations choose self-hosting: data sovereignty, compliance, security, and the control it offers over quality, cost, and latency The three core LLM pipelines: inference, RAG, and fine-tuning The current landscape of inference options—from APIs to open-source platforms to bare-metal infrastructure Setting up and operating a serving pipeline: what it takes to get models running and keep them that way A look at Infratailors and how we're approaching deployment optimisation Format: This is a discussion webinar, not a lecture. We'll pause for quick polls throughout and leave ample time for Q&A. Come ready to share your own experiences and challenges. Whether you're still experimenting, running a pilot, or scaling production workloads, you'll leave with a clearer picture of what self-hosted LLM operations actually involves. The webinar is hosted by Infratailors (www.infratailors.ai).