У нас вы можете посмотреть бесплатно Dealing with Imbalanced Datasets in ML Classification Problems | DataHour by Damini Dasgupta или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
                        Если кнопки скачивания не
                            загрузились
                            НАЖМИТЕ ЗДЕСЬ или обновите страницу
                        
                        Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
                        страницы. 
                        Спасибо за использование сервиса ClipSaver.ru
                    
An Imbalanced Classification Problem is an example of a classification problem where the classes of the response are biased or skewed. Imbalanced datasets pose a challenge for predictive modeling as most of the machine learning algorithms used for classification were designed around the assumption of an equal number of examples for each class. This results in models that have poor predictive performance. Reference Documents: https://drive.google.com/drive/folder... In this DataHour, Damini will explore the following topics in detail: 1. What are highly imbalanced datasets and the problems associated around them 2. Identifying the right metrics to use in case of imbalanced classification 3. How to treat imbalanced datasets to improve your model accuracy For more amazing datahour session, visit: https://datahack.analyticsvidhya.com/... Stay on top of your industry by interacting with us on our social channels: Follow us on Instagram: / analytics_vidhya Like us on Facebook: / analyticsvidhya Follow us on Twitter: / analyticsvidhya Follow us on LinkedIn: / analytics-vidhya