У нас вы можете посмотреть бесплатно Scarce Data, Noisy Inferences, and Overfitting: The Hidden Flaws in Ecological Dynamics Modelling или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Video summary of paper: Metagenomic data has significantly advanced microbiome research by employing ecological models, particularly in personalised medicine. The generalised Lotka-Volterra (gLV) model is commonly used to understand microbial interactions and predict ecosystem dynamics. However, gLV models often fail to capture complex interactions, especially when data is limited or noisy. This study critically assesses the effectiveness of gLV and similar models using Bayesian inference and a model reduction method based on information theory. We found that ecological data often leads to non-interpretability and overfitting due to limited information, noisy data, and parameter sloppiness. Our results highlight the need for simpler models that align with the available data and propose a distribution-based approach to better capture ecosystem diversity, stability, and competition. These findings challenge current bottom-up ecological modelling practices and aim to shift the focus toward a Statistical Mechanics view of ecology based on distributions of parameters.