У нас вы можете посмотреть бесплатно Data-driven Multi-level Segmentation of Image Editing Logs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Data-driven Multi-level Segmentation of Image Editing Logs Zipeng Liu, Zhicheng Liu, Tamara Munzner CHI '20: ACM CHI Conference on Human Factors in Computing Systems Session: Photo & video manipulation Abstract Automatic segmentation of logs for creativity tools such as image editing systems could improve their usability and learnability by supporting such interaction use cases as smart history navigation or recommending alternative design choices. We propose a multi-level segmentation model that works for many image editing tasks including poster creation, portrait retouching, and special effect creation. The lowest-level chunks of logged events are computed using a support vector machine model and higher-level chunks are built on top of these, at a level of granularity that can be customized for specific use cases. Our model takes into account features derived from four event attributes collected in realistically complex Photoshop sessions with expert users: command, timestamp, image content, and artwork layer. We present a detailed analysis of the relevance of each feature and evaluate the model using both quantitative performance metrics and qualitative analysis of sample sessions. DOI:: https://doi.org/10.1145/3313831.3376152 WEB:: https://chi2020.acm.org/ Remote Presentations for the ACM CHI Conference on Human Factors in Computing Systems 2020.