У нас вы можете посмотреть бесплатно Linear Regression: MLE for Methods of Estimation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Most of our semester in BIOS 6611 has focused on the ordinary least squares approach to estimation and derivation of our regression coefficients. However, we can also use maximum likelihood estimation to derive our beta coefficients and other quantities of interest (and, spoiler, the beta coefficients are identical to OLS!). The MLE approach is more general, however, and will be useful as you take future classes and learn about generalized linear models (e.g., logistic regression, Poisson regression, etc.). This lecture shows the approach for deriving the maximum likelihood estimators for linear regression and motivates the next step of learning about generalized linear models. A video for the Biostatistical Methods I (BIOS 6611) course in the Department of Biostatistics and Informatics at the University of Colorado-Anschutz Medical Campus taught by Dr. Alex Kaizer. Slides and additional material available at https://www.alexkaizer.com/bios_6611. Table of Contents: 00:00 - Intro Song 00:16 - Welcome 00:45 - Methods of Estimation for Regression 02:14 - MLE for Linear Regression 04:20 - Y's PDF 05:34 - The Likelihood Function 07:07 - The Log-Likelihood 08:24 - MLE of Regression Coefficients 09:21 - MLE of Variance 11:48 - Generalized Linear Model Preview