У нас вы можете посмотреть бесплатно Latest Tiger Analytics coding Interview Questions & Answers | Data Engineer Prep 2024 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Top Tiger Analytics SQL Interview Questions and Boost Your Data Engineering Career in 2024! Are you preparing for a data engineering interview at Tiger Analytics? You've come to the right place! This comprehensive guide covers essential pyspark interview questions and provides in-depth answers to help you succeed in your upcoming interview. Whether you're a seasoned professional or just starting your career in data engineering, this video is packed with valuable insights to give you a competitive edge. 🔍 What You'll Learn: Recent pyspark questions for Tiger Analytics interviews Real-world data engineering scenarios and solutions Expert tips for acing your technical interview Insider knowledge on Tiger Analytics's interview process Hands-on practice with sample SQL queries 📊 Sample Data : Let's dive into a practical example that you might encounter in your Tiger Analytics interview: data = [('TV', '2016-11-27', 800),('TV', '2016-11-30', 900),('TV', '2016-12-29', 500),('TV', '2017-11-20', 400),('FRIDGE', '2016-10-11', 760),('FRIDGE', '2016-10-13', 400),('FRIDGE', '2016-11-27',460)] schema = ['product','sale_date','amount'] data1 = [('20d75c97-5fee-11e8-92c7-67fe1c388607',['A:X:M', 'B:Y:N', 'C:Z:O', 'D:W:P', 'E:V:Q','A:W:P']),('20d75c98-5fee-11e8-92c7-5f0316c1a74f',['A:X:M', 'B:W:N', 'C:L:O']),('20d75c99-5fee-11e8-92c7-d9bfa897a151',['A:X:M', 'F:Y:N', 'H:Z:O','A:W:P'])] schema1 = ['uniqueid','status_value'] data2 = [(123, 'impression', '07/18/2022 11:36:12'),(123, 'impression', '07/18/2022 11:37:12'),(123, 'click', '07/18/2022 11:37:42'),(234, 'impression', '07/18/2022 14:15:12'),(234, 'click', '07/18/2022 14:16:12')] schema2 = ['app_id','event_type','timestamp'] 🚀 Key Topics Covered: Advanced pyspark conceps Aggregation and window functions Data modeling best practices Performance tuning for large datasets Dealing with data inconsistencies and duplicates 💡 Interview Success Strategies: Understand the interviewer's perspective Showcase your problem-solving skills Communicate your thought process effectively Demonstrate your knowledge of data engineering principles Highlight relevant projects and experiences 🔗 Additional Resources: To further enhance your preparation, check out these playlists: PySpark playlist : • PySpark and Databricks Azure Datafactory playlist : • Azure Data Factory Tutorial PySpark RealTime Scenarios playlist : • PySpark Real Time Scenarios Azure Data Factory RealTime Scenarios playlist : • Azure Data Factory RealTime Scenarios PySpark Interview Question : • PySpark Interview Series Scenario Based Interview Question : • Scenario Based Interview Question Unit Testing in PySpark : • UnitTesting PySpark 🌟 Why This Video Stands Out: Up-to-date content reflecting Tiger Analytics's latest interview trends In-depth explanations of complex SQL concepts Real-world examples from experienced data engineers Interactive coding demonstrations Tips for both technical and soft skills required for success 👨💻 About the Instructor: As an experienced data engineer and interview coach, I've helped countless professionals land their dream jobs at top tech companies like Tiger Analytics. My practical approach and industry insights will give you the confidence to excel in your interview. 🔔 Stay Connected: Don't miss out on future interview tips and data engineering content! Subscribe to this channel and hit the notification bell to stay updated. GitHub Repository: https://github.com/Pritamsaha627/Pyspark LinkedIn Profile: / pritam-saha-060516139 Telegram Channel: https://t.me/CognitiveCoders WhatsApp Channel: https://whatsapp.com/channel/0029Va4x... Instagram : / pritamsaha627 📧 Need Personalized Guidance? For one-on-one coaching or specific interview questions, feel free to reach out: Email: pritamsaha2708@gmail.com Topmate: https://topmate.io/pritamsaha627 Remember, success in data engineering interviews comes from consistent practice and a deep understanding of core concepts. This video is your first step towards acing your Tiger Analytics interview and launching your dream career in data engineering. Like, share, and subscribe for more valuable content on data engineering, pyspark, SQL and tech interviews. Your support motivates us to create high-quality, informative videos to help you succeed in your career journey. 1 Subscriber, 1👍🏻, 1Comment = 100 Motivation 🙏🏼 🙏🏻Please Subscribe 🙏🏼 #TigerAnalytics #DataEngineering #InterviewQuestions #DataEngineer #TechInterviews