У нас вы можете посмотреть бесплатно Master CONJUGATE GRADIENT METHOD in 3 Minutes или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video details the conjugate gradient method, an efficient computational technique for solving large sparse systems of linear equations. It explores how this problem is equivalent to an optimization task, specifically minimizing a scalar function. We cover the mathematical foundation of this iterative methods, demonstrating how the solution is found when the gradient of the scalar function is zero. Perfect for anyone interested in advanced numerical methods, especially those working with linear algebra in scientific computing. *Unlock the power of the Conjugate Gradient method for solving large, sparse linear systems!* In this concise, step‑by‑step tutorial you’ll master the mathematical foundation, algorithm flow, and a complete *Python implementation* using NumPy. Watch as we break down each iteration, compute step sizes, update search directions, and show why CG converges in at most n iterations for an n × n matrix. What you’ll learn *Theory & intuition:* how minimizing a quadratic form relates to solving \(Ax=b\) *Algorithm walkthrough:* residual, direction, and step‑size calculations *Python code:* clean, annotated implementation you can run on any sparse matrix *Real example:* a practical Ax = b system and how to verify the solution *When to use CG:* comparison with Jacobi, Gauss‑Seidel, and LU/Cholesky/QR methods *Applications:* finite‑element analysis, computational physics, and machine‑learning optimizations Why it matters Conjugate Gradient shines when *efficiency* and *scalability* are critical—think massive scientific simulations, large‑scale data models, or any problem where a direct solver stalls. By the end of the video you’ll have a robust, reusable CG solver ready for your own projects. *Ready to dive in?* 1️⃣ *Subscribe* for more numerical analysis tutorials 2️⃣ *Hit the bell* for notifications 3️⃣ *Download the Python code* from the GitHub link in the description 4️⃣ *Comment* with questions or your own CG use cases #ConjugateGradient #NumericalAnalysis #LinearAlgebra #PythonTutorial #ScientificComputing