У нас вы можете посмотреть бесплатно The Karush–Kuhn–Tucker (KKT) Conditions and the Interior Point Method for Convex Optimization или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A gentle and visual introduction to the topic of Convex Optimization (part 3/3). In this video, we continue the discussion on the principle of duality, which ultimately leads us to the "interior point method" in optimization. Along the way, we derive the celebrated Karush–Kuhn–Tucker (KKT) conditions. This is the third video of the series. Part 1: What is (Mathematical) Optimization? ( • What Is Mathematical Optimization? ) Part 2: Convexity and the Principle of (Lagrangian) Duality ( • Convexity and The Principle of Duality ) Part 3: Algorithms for Convex Optimization (Interior Point Methods). ( • The Karush–Kuhn–Tucker (KKT) Conditions a... ) -------------------------------- References: Boyd and Vandenberghe's wonderful book on convex optimization: https://stanford.edu/~boyd/cvxbook/ -------------------------------- Typos and precisions: At 12:50 by "grad_f and grad_g are inversely proportional", I mean grad_f and grad_g are proportional to each other with a negative coefficients. At 13:47, the correct feasibility equation for x is g(x) \le 0, and not g(x) \ge 0 as stated in the video. This typo goes away starting from 15:11 -------------------------------- Timestamps: 0:00 Previously 0:25 Working Example 8:03 Duality for Convex Optimization Problems 10:38 KKT Conditions 15:00 Interior Point Method 21:00 Conclusion -------------------------- Credit: 🐍 Manim and Python : https://github.com/3b1b/manim 🐵 Blender3D: https://www.blender.org/ 🗒️ Emacs: https://www.gnu.org/software/emacs/ This video would not have been possible without the help of Gökçe Dayanıklı. -------------------------- 🎵 Music Vincent Rubinetti (https://vincerubinetti.bandcamp.com/) Carefree by Kevin MacLeod ( • Thinking Music )