У нас вы можете посмотреть бесплатно Vector search without breaking the bank: Quantization and Adaptive Retrieval или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Install NLP Libraries https://www.johnsnowlabs.com/install/ Watch all NLP Summit 2024 sessions: https://www.nlpsummit.org/nlp-summit-... This session shows how you use the open-source Weaviate vector database to perform real-time billion-scale vector searches – on your laptop! This includes covering different quantization techniques, including product, binary, scalar, and matryoshka quantization that can be used to compress vectors trading off memory requirements for accuracy. I’ll also introduce the concept of adaptive retrieval where you first perform a cheap hardware-optimized low-accuracy search to identify retrieval candidates using compressed vectors followed by a slower, higher-accuracy search to rescore and correct. These quantization techniques when used with well-thought-out adaptive retrieval can lead to a 32x reduction in memory cost requirements at the cost of ~ 5% loss in retrieval recall in your RAG stack. This session was presented by Zain Hasan, Senior Developer Advocate at Weaviate Connect with us: Our website: https://www.johnsnowlabs.com/ LinkedIn: / johnsnowlabs Facebook: / johnsnowlabsinc Twitter: @johnsnowlabs