У нас вы можете посмотреть бесплатно Most Engineers Fail These Agentic AI Interview Questions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Most engineers can talk about AI. Far fewer can reason about production systems under real constraints. If you understand these concepts — but haven’t actually built a production pipeline — that gap shows up immediately in interviews. Build one here: 👉 https://rag.nachiketh.in Learn how to design, orchestrate, guardrail, observe, and deploy a production-style RAG system end-to-end. No toy demos. Real system thinking. Engineers who want to move beyond single pipelines into multi-agent architecture, evaluation loops, cost governance, and production-scale patterns typically go deeper inside the Agentic AI Enterprise Bootcamp. But first — you must know how to build correctly. In this video, I walk through real Agentic AI interview questions that senior engineers are being asked — covering cost optimization, guardrail placement, and production tradeoffs. These are the questions that quickly separate demo-builders from engineers who have actually designed systems. If you're preparing for senior AI roles, system design interviews, or architect-level conversations — this is the level of thinking expected today. What You’ll Learn ✔ How strong candidates approach cost optimization ✔ Where guardrails should actually live in an agent system ✔ Why model-switching is often the wrong first move ✔ The architecture ’thinking patterns’ interviewers look for ✔ Common incomplete answers that get candidates rejected ✔ How production engineers reason about tradeoffs