У нас вы можете посмотреть бесплатно How to Find Eigenvalues & Eigenvectors for a 3x3 Matrix или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this in-depth linear algebra tutorial, you will learn the complete step-by-step process for calculating the eigenvalues and eigenvectors of a 3x3 matrix. Starting with the fundamental characteristic equation $\det(A - \lambda I) = 0$, the lesson demonstrates a shortcut method to find the characteristic polynomial using trace properties and cofactor expansions. You'll follow along as we solve the resulting cubic equation using synthetic division and the quadratic formula to find the three distinct eigenvalues: 1, 2, and 3.Once the eigenvalues are determined, the video shifts to solving for their corresponding eigenvectors. For each eigenvalue, the matrix is reduced into a system of linear equations. You will see how to apply cofactor methods and simplification techniques to derive the final vector sets—specifically how we find the ratios for $x, y,$ and $z$ to produce vectors like $[4, 3, 2]^T$ and $[2, 1, 1]^T$. Whether you're a math student or an engineer, this clear and exhaustive breakdown provides the tools needed to master eigen-calculations for higher-order matrices. #LinearAlgebra #Eigenvalues #Eigenvectors #3x3Matrix #MathematicsTutorial #MatrixTheory #STEMEducation #EngineeringMath #AlgebraStepByStep