У нас вы можете посмотреть бесплатно Imputation vs. Listwise Deletion (Example in R) | Handle Missing Values | Substitute & Complete Data или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video shows a comparison of Missing Data Imputation & Listwise Deletion in the R programming language. Check out my online course on Missing Data Imputation in R: https://statisticsglobe.com/online-wo... R code of this video: install.packages("ggplot2") # Install & load ggplot2 library(ggplot2) install.packages("mice") # Install & load mice library(mice) set.seed(875526) # Seed for reproducibility n_sample <- 100000 # Specify sample size x1 <- round(rnorm(n_sample), 2) # Create x variables x2 <- round(rnorm(n_sample) + 0.1 * x1, 2) x3 <- round(rnorm(n_sample) - 0.4 * x1 - 0.1 * x2, 2) x4 <- round(rnorm(n_sample) - 0.2 * x1 - 0.3 * x2 + 0.1 * x3, 2) y <- round(rnorm(n_sample) + 0.2 * x1 + 0.1 * x2 - 0.3 * x3 + 0.1 * x4, 2) # y df_true <- data.frame(x1, x2, x3, x4, y) # Create true data frame head(df_true) # Head of true data df_mcar <- df_true # Insert MCAR missingness df_mcar$y[sample(1:n_sample, 0.25 * n_sample)] <- NA head(df_mcar) # Head of MCAR data df_mar <- df_true # Insert MAR missingness rm_miss_mar <- - 0.8 * x1 - 0.7 * x2 + 0.9 * x3 - 0.8 * x4 + rnorm(n_sample) dummy_miss_mar <- rep(1, n_sample) dummy_miss_mar[rm_miss_mar < quantile(rm_miss_mar)[2]] <- 0 df_mar$y[dummy_miss_mar == 0] <- NA head(df_mar) # Head of MAR data df_mcar_list <- na.omit(df_mcar) # Listwise deletion df_mar_list <- na.omit(df_mar) dim(df_mcar_list) # Rows after deletion dim(df_mar_list) round(mean(df_true$y), 3) # Means after deletion round(mean(df_mcar_list$y), 3) round(mean(df_mar_list$y), 3) ggplot() + # Densities after deletion geom_density(data = df_true, aes(x = y, color = "True Values")) + geom_density(data = df_mcar_list, aes(x = y, color = "MCAR")) + geom_density(data = df_mar_list, aes(x = y, color = "MAR")) + guides(color = guide_legend(title = NULL)) + ggtitle("Densities after Listwise Deletion") df_mcar_mice <- complete(mice(df_mcar, m = 1)) # Imputation df_mar_mice <- complete(mice(df_mar, m = 1)) dim(df_mcar_mice) # Rows after deletion dim(df_mar_mice) round(mean(df_true$y), 3) # Means after imputation round(mean(df_mcar_mice$y), 3) round(mean(df_mar_mice$y), 3) ggplot() + # Densities after deletion geom_density(data = df_true, aes(x = y, color = "True Values")) + geom_density(data = df_mcar_mice, aes(x = y, color = "MCAR")) + geom_density(data = df_mar_mice, aes(x = y, color = "MAR")) + guides(color = guide_legend(title = NULL)) + ggtitle("Densities after mice Imputation") Follow me on Social Media: LinkedIn – Joachim Schork Profile: / linkedin – Statistics Globe Page: / statisticsglobe LinkedIn – R Programming Group for Discussions & Questions: / 12555223 LinkedIn – Python Programming Group for Discussions & Questions: / 12673534 X (Formerly Twitter): https://x.com/JoachimSchork Facebook – Joachim Schork Profile: / facebook – Statistics Globe Page: / statisticsglobecom Facebook – R Programming Group for Discussions & Questions: / statisticsglobe Facebook – Python Programming Group for Discussions & Questions: / statisticsglobepython Instagram: / statisticsglobecom TikTok: / statisticsglobe