У нас вы можете посмотреть бесплатно AutoML 2.0: Control what you want, automate the rest или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Building ML solutions from scratch is a challenge: complex low-level code and long dev cycles make it hard to deploy a single model in less than 6 mos. On the other hand, existing commercial AutoML solutions lack flexibility and support for unstructured data, and typically don’t perform well for complex deep-learning use cases. A new generation of AutoML technologies—like those pioneered at Uber, Apple, and Meta—aim to change that. These declarative machine learning systems provide a glass-box approach to automating ML that enables data teams to bring new models to market faster with complete flexibility and control, and the power to work with unstructured data sets for a broad range of use cases like NLP and Computer Vision. Join this webinar and demo to learn: ● Why current AutoML solutions fall short ● What are declarative ML systems with a deep dive on open-source Ludwig from Uber ● How to build state-of-the-art deep learning models in less than 15 lines of code with a config-driven approach ● How to rapidly train, iterate, and deploy an ML model on structured and unstructured data with Ludwig and Predibase Get started with Predibase by requesting access to the platform: https://pbase.ai/GetStarted