У нас вы можете посмотреть бесплатно 148 - 7 techniques to work with imbalanced data for machine learning in python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Imbalanced data is part of life! With a proper knowledge of the data set and a few techniques from this video imbalanced data can be easily managed. Prerequisites: Pick the right metrics as overall accuracy does not provide information about the accuracy of individual classes. Look at confusion matrix and ROC_AUC. Technique 0: Collect more data, if possible. Technique 1: Pick decision tree based approaches as they work better than logistic regression or SVM. Random Forest is a good algorithm to try but beware of over fitting. Technique 2: Up-sample minority class Technique 3: Down-sample majority class Technique 4: A combination of Over and under sampling. Technique 5: Penalize learning algorithms that increase cost of classification mistakes on minority classes. Technique 6: Generate synthetic data (SMOTE, ADASYN) Technique 7: Add appropriate weights to your deep learning model. References: https://imbalanced-learn.org/stable/o... https://scikit-learn.org/stable/modul... Code generated in the video can be downloaded from here: https://github.com/bnsreenu/python_fo...