• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI скачать в хорошем качестве

Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI 6 months ago

Stanford

Stanford Online

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI в качестве 4k

У нас вы можете посмотреть бесплатно Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Stanford Webinar - Large Language Models Get the Hype, but Compound Systems Are the Future of AI

For more information about Stanford's Artificial Intelligence programs visit: https://stanford.io/ai In recent years AI has taken center stage with the rise of Large Language Models (LLMs) that can be used to perform a wide range of tasks, from question answering to coding. There is now a strong focus on large pretrained foundation models as the core of AI application development. But on their own, these models don’t do much besides taking up significant disk space—it’s only when they’re embedded within larger systems that they start to deliver state-of-the-art results. In this webinar, Professor Christopher Potts will discuss how AI systems built with multiple interacting components can achieve superior results compared to standalone models. He will also examine how this systems approach impacts AI research, product development, safety, and regulation. View AI Professional Program: https://online.stanford.edu/programs/... Chapters: 00:00 - Introduction 00:14 - The Present and Future of Compound Systems 00:38 - Large Language Models and Industry Trends 00:55 - The Impact of GPT-3 on AI 01:07 - Google PaLM and Model Announcements 01:41 - OpenAI's Transition to Systems Thinking 02:01 - Building Effective AI Systems 02:23 - Minimal System for Model Interaction 02:56 - Importance of Prompting and Sampling Methods 03:22 - Various Sampling Techniques 04:04 - Chain-of-Thought Reasoning 04:30 - Majority Completion Strategies 05:00 - Exploring Innovative Sampling Techniques 05:37 - Importance of Systems Thinking 05:56 - Tool Access and System Design 06:40 - Understanding the Evolution of Google Search 06:58 - Scaling Systems for AI 07:53 - Learning from Past Experiences 08:04 - Guardrails and Regulation 09:53 - The Future Impact of AI on Society 10:34 - Insights for Technical and Business Leaders 11:18 - DSPy Learning Resources 12:00 - Final Thoughts on Systems Thinking 12:38 - Conclusion and Q&A Session

Comments
  • Stanford Webinar - How AI is Changing Coding and Education, Andrew Ng & Mehran Sahami 7 months ago
    Stanford Webinar - How AI is Changing Coding and Education, Andrew Ng & Mehran Sahami
    Опубликовано: 7 months ago
    46875
  • Stanford CS229 I Machine Learning I Building Large Language Models (LLMs) 9 months ago
    Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)
    Опубликовано: 9 months ago
    1175446
  • Introduction to Generative AI 1 year ago
    Introduction to Generative AI
    Опубликовано: 1 year ago
    403302
  • Integrating Generative AI Into Business Strategy: Dr. George Westerman 3 months ago
    Integrating Generative AI Into Business Strategy: Dr. George Westerman
    Опубликовано: 3 months ago
    109271
  • Dario Amodei: Anthropic CEO on Claude, AGI & the Future of AI & Humanity | Lex Fridman Podcast #452 7 months ago
    Dario Amodei: Anthropic CEO on Claude, AGI & the Future of AI & Humanity | Lex Fridman Podcast #452
    Опубликовано: 7 months ago
    1510920
  • Generative AI for Healthcare (Part 1): Demystifying Large Language Models 1 month ago
    Generative AI for Healthcare (Part 1): Demystifying Large Language Models
    Опубликовано: 1 month ago
    24701
  • Instability is All You Need: The Surprising Dynamics of Learning in Deep Models 5 months ago
    Instability is All You Need: The Surprising Dynamics of Learning in Deep Models
    Опубликовано: 5 months ago
    8679
  • Andrew Ng: Opportunities in AI - 2023 1 year ago
    Andrew Ng: Opportunities in AI - 2023
    Опубликовано: 1 year ago
    1960277
  • AI, Machine Learning, Deep Learning and Generative AI Explained 10 months ago
    AI, Machine Learning, Deep Learning and Generative AI Explained
    Опубликовано: 10 months ago
    1790643
  • What Is an AI Anyway? | Mustafa Suleyman | TED 1 year ago
    What Is an AI Anyway? | Mustafa Suleyman | TED
    Опубликовано: 1 year ago
    2401388

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5