У нас вы можете посмотреть бесплатно Intro to GNSS Episode 5 – Adding Sensors for Enhanced Positioning | NovAtel, part of Hexagon или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Hexagon | NovAtel positioning product manager, agriculture Haley Lawrance describes how inertial navigation systems can be combined with traditional GNSS for enhanced positioning. In episode five of our on-demand webinar series, she demonstrates how INS use inertial measurement units to understand motion, and outlines several methods of sensor fusion. We cover more of these topics in our free book, an Introduction to GNSS: https://novatel.com/support/knowledge... An inertial navigation system uses rotation and acceleration information to understand your movement in a three-dimensional space. It calculates your position, velocity, and attitude in relation to an external reference. The system uses inertial measurement units (IMU) to calculate your precise relative movement like position, velocity, and attitude, including roll, pitch, and azimuth. But, IMUs still need an external reference in order to determine your location on the Earth. The INS on its own can only provide measurements in reference to itself. GNSS positioning delivers latitude, longitude, and height positioning nearly anywhere in the world, but you need to have direct line of sight to at least four satellites. You can have meter to centimeter-level accuracy, but that varies and is even disrupted as a result of signal blockages, multipath, and atmospheric delays. INS calculates the change in position based on its own direction and orientation measurements, but requires an external reference for those measurements to be applicable to the environment. As with any system, errors are present; for INS, sensor errors inherent to the IMU can cause position drift over time and require an absolute reference to correct for that drift. Accuracy can be limited by the quality of the IMU, as INS can only generate a position in relation to an externally provided point. When combining GNSS and INS, they seamlessly complement each other. While the GNSS position understands your location in the world, the INS solution understands how you move through it. Combining GNSS and INS is an example of what is called Sensor Fusion. There are other technologies that can be combined in this manner to deliver more and more accurate solutions, or to provide different types of information that help paint a better picture about the application. Sensor fusion can include the combination of GNSS and INS, used in NovAtel’s SPAN® technology. Sensor fusion also includes additional sensors like odometers, light detection and ranging, also known as LiDAR, and vision aided navigation. NovAtel SPAN technology describes our software that combines GNSS and INS positioning, as well as the hardware built to measure GNSS signals and IMU measurements. GNSS and INS solutions can be combined and integrated at various levels, from deeply coupled, to tightly coupled, to loosely coupled. Odometers track the velocity of a ground vehicle and can offer an independent measurement of distance to the GNSS and INS solution, especially when GNSS signals are disrupted. This is especially useful in GNSS signal outages, such as a tunnel. LiDAR systems use pulses of light to understand the solution’s surroundings. Each light pulse that is emitted from the LiDAR unit gets reflected from various surfaces, allowing the system to compute a range between the sensor and any surrounding objects. Vision aided navigation is also called photogrammetry. This concept is very similar to LiDAR, except the system is now using cameras instead of laser beams. Usually, this kind of system takes the form of cameras to identify objects as reference points. The solution can then calculate relative position to those reference points, as well as a general heading to know what direction the solution is moving in. This is by no mean a comprehensive list of all the sensors that can be used to aid GNSS. The technologies listed here are just a sample of some of the more widely used techniques. There are many different applications for a combined GNSS and INS solution, including automotive and agriculture. Not only can SPAN track the movement of a ground vehicle, but the trusted position can also be used to ensure it stays on a specified path. This is a fundamental technology used for autonomous cars and tractors. In a marine environment, the right GNSS+INS solution would be able to compensate for heave motions from waves. For mobile mapping, INS sensors can monitor the subtle changes in position, velocity, and attitude on a small device carried by its user, while using LiDAR to collect 3D point cloud data about the user's surroundings. Sensor fusion with GNSS and INS technologies creates a comprehensive positioning solution that extends and verifies an accurate position in moving objects. They are very complementary technologies, and work together to deliver enhanced positioning.