У нас вы можете посмотреть бесплатно Top Pose Estimation Models in AI & Computer Vision | 2D vs 3D Tracking или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What are Pose Estimation Models? In this video, we explore how artificial intelligence and deep learning are used to track and understand human movement through pose estimation. You’ll learn how AI can detect body keypoints, map human skeletons, and estimate real-time movements for applications in fitness, sports, gaming, healthcare, and more. In this video, we cover: What is pose estimation and how it works 2D vs 3D pose estimation models Top pose estimation models: OpenPose, MediaPipe BlazePose, PoseNet, HRNet, AlphaPose Real-time pose tracking using Python Best libraries and tools: TensorFlow, OpenCV, PyTorch, MediaPipe Applications: fitness tracking, AR/VR, gesture control, physical therapy, surveillance, robotics, and animation Why it matters: Track body movement in real-time Build smart fitness and sports apps Enable interactive AR/VR experiences Improve healthcare and rehabilitation solutions Enhance smart camera and surveillance systems This video is ideal for AI developers, computer vision students, and anyone interested in the intersection of human motion and technology. Tools & Libraries Featured: Python OpenCV PyTorch TensorFlow MediaPipe Don’t forget to like, subscribe, and drop your questions in the comments! #PoseEstimation #HumanPoseEstimation #ComputerVision #OpenPose #PoseNet #BlazePose #MediaPipe #AIModels #DeepLearning #MachineLearning #RealTimeAI #PythonAI #SportsAI #ARVR #GestureRecognition #AIApplications #3DPoseEstimation #2DPoseEstimation #PyTorch #TensorFlow #OpenCV #HumanMotionAI #AIinHealthcare #AIinFitness