У нас вы можете посмотреть бесплатно CONVERSION OF NFA WITH EPSILON TO NFA OR DFA IN FLAT/DFA #4 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
[00:00] - Introduction and Problem Statement The video begins by introducing the topic: converting an NFA with \epsilon (epsilon) transitions. A specific NFA diagram is presented as the example for the conversion process. [01:15] - Identifying the States and Alphabet The presenter lists the components of the given NFA, including the set of states (e.g., q0, q1, q2) and the input symbols (alphabet) being used. [02:30] - Calculating Epsilon Closures (\epsilon-closure) A critical step where the presenter explains how to find the \epsilon-closure for each state. This involves identifying all states reachable from a given state using only \epsilon transitions. [04:10] - Computing the New Transition Function The video demonstrates the formula for the new transition function: \delta'(q, a) = \epsilon\text{-closure}(\delta(\hat{\delta}(q, \epsilon), a)). The presenter walks through the calculations for each state and input symbol. [06:00] - Constructing the Transition Table Based on the computed transitions, a new transition table for the NFA (without \epsilon) is constructed. This table serves as the foundation for drawing the final automaton. [07:15] - Identifying Final States and Drawing the Result The presenter explains how to determine the new final states—if a state's \epsilon-closure contains an original final state, it becomes a final state in the new machine. The video concludes by sketching the resulting NFA/DFA diagram.