У нас вы можете посмотреть бесплатно Reproducible data science with webR and Shinylive | George Stagg | Posit или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A fundamental principle of the scientific method is peer review and independent verification of results. Good science depends on transparency and reproducibility. However, in a recent study a substantial 74% of research code failed to run without errors, often caused by diverse computing environments. This talk will discuss the principles of numerical reproducibility in research and show how software can be pinned to specific versions and self-contained as a universal binary package using WebAssembly. This ensures seamless reproducibility on any machine equipped with a modern web browser and, using tools such as Shinylive, could provide a new way for researchers to share results with the community. webR demo website: https://webr.r-wasm.org/v0.3.2/ Shinylive examples: https://shinylive.io/r/ https://shinylive.io/py/ Documentation: https://docs.r-wasm.org/webr/v0.3.2/ https://github.com/posit-dev/shinylive https://github.com/quarto-ext/shinylive