У нас вы можете посмотреть бесплатно Leetcode 33 | Search in Rotated Sorted Array in C++ | Modified Binary Search | O(log N) Solution или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A modified binary search approach to solving the "Search in Rotated Sorted Array" problem is presented as a C++ solution. The following is an implementation of a solution to the problem of searching for a target value in a rotated sorted array. A rotated sorted array is an array that was originally sorted in ascending order but then rotated at some pivot point. The goal is to find the index of the target value in the array, or return -1 if the target is not present. The algorithm starts by initializing two pointers, left and right, to the beginning and end of the array, respectively. The while loop runs as longs as left is less than or equal to right, ensuring the search space is not exhausted. Within the loop, the midpoint mid is calculated using the formula left + (right – left) / 2. This formula helps avoid any overflow issues that can occur when using other formulas, like (left + right) / 2. The algorithm checks if the value at nums[mid] matches the target. It it does, the index mid is returned immediately. If the target is not found at mid, the algorithm determines which half of the array is sorted. If the left half (nums[left] to nums[mid]) is sorted, it checks whether the target lies within this range. If it does, the search space is narrowed to the left half by updating right to mid - 1. Otherwise, the search continues in the right half by updating left to mid + 1. If the left half is not sorted, the right half (nums[mid] to nums[right]) must be sorted. The algorithm then checks whether the target lies within this range. If it does, the search space is narrowed to the right half by updating left to mid + 1. Otherwise, the search continues in the left half by updating the right to mid – 1. The loop continues until the target is found or the search space is exhausted. If the target is not found, the function returns –1. This approach ensures that the algorithm efficiently handles the rotated nature of the array while maintaining the logarithmic time complexity of binary search. Related article on Medium: / leetcode-33-search-in-rotated-sorted-array... 00:00 - Problem Statement 02:00 - Drawing & Explanation 06:15 - Coding & Implementation 10:28 - Complexity Analysis #cpp #codinginterview #binarysearch #programming