У нас вы можете посмотреть бесплатно CodeOCR: Vision Language Models for Efficient Visual Code Understanding или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
We are dealing with CodeOCR research that analyzes the efficiency and effect of processing source code in the form of images rather than text using **Vision Language Models(VLMs)**. The existing text-based method has the limit that the cost of operations increases rapidly as the length of the code increases, but rendering the code as an image allows you to greatly compress the data while minimizing information loss through resolution adjustment. According to the results of the study, the latest models showed the same or even better comprehension ability than text-based models at compression ratios of up to eight times, and visual elements such as syntax emphasis contribute to improved performance. In particular, it demonstrates high resilience to visual compression in tasks such as replication detection and Q&A, which suggests the possibility that AI's code understanding will be switched to image-based in the future. In conclusion, the paper emphasizes that visual code representation is a promising alternative to solving the problem of reasoning costs that arise when dealing with large software systems. https://arxiv.org/pdf/2602.01785