У нас вы можете посмотреть бесплатно Master the Graph: Uber Coding Interview Question или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
FREE "12 Coding Interview Patterns That Actually Get Asked" PDF 👉https://tinyurl.com/12-coding-patterns 📂 Interview Patterns Starter Pass: https://tinyurl.com/cc-starter-pass ----- Master the Graph: Uber Coding Interview Question 🚀 Can you determine if a path exists between two nodes in a directed graph? In this video, we tackle a classic **Uber coding interview question**: "Path in Directed Graph." This problem is a fundamental test of your ability to handle graph data structures and traversal algorithms. What You’ll Learn: *Directed vs. Undirected Graphs:* A quick refresher on how one-way edges change your traversal logic. *The Power of Adjacency Lists:* Why the raw input format (a list of edges) is inefficient and how to convert it into a usable adjacency list for faster lookups. *Depth-First Search (DFS) Implementation:* We walk through a solution step-by-step, showing you how to use recursion and a `marked` array to track visited nodes. *Object-Oriented Design:* See how creating a custom `Digraph` class can make your code cleaner and more impressive during an actual technical interview. Why This Video? This problem is the perfect foundation for more complex graph problems asked at top tech companies like Uber. We don't just give you the code; we explain the *pattern* so you can apply it to any graph traversal challenge. #Java #CodingInterview #Uber #DataStructures #Algorithms #GraphTheory #DFS --- 0:00 - Problem Overview & Difficulty 0:40 - Understanding Directed Graphs & Inputs 5:55 - Designing the `Digraph` Class 8:15 - Why you MUST use an Adjacency List 11:42 - Implementing Depth-First Search (DFS) 15:15 - Final Solution & Performance